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Chapter 5 

5.1 Areas and Distances 

The Area problem: How do we determine the area between a function and the x-axis over a 

given interval? 

We divide the interval into rectangles of varying height and approximate the area by summing 

the areas of the rectangles 

Estimating the area under 
2x  

Placing the left endpoints of our rectangles on the function yields an underestimate of the area 

under 
2x over the given interval.  Placing the right endpoints of our rectangles on the function 

yields an overestimate.  The true area must be between the two estimates. 

Now, increase the amount of rectangles, creating more ever-thinner strips, and repeat the 

process of summing their areas.  As the number of strips increases, so too does the precision of 

the answer. The answer approaches 
1

3
as the number of rectangles approaches infinity. 

The areas of the rectangles are 

2 2 2 2
1 1 1 2 1 3 1

...
n

n n n n n n n n

           
              

           
 

Factoring out

3
1

n

 
 
 

, we have  
3

2 2 2 21
1 2 3 ... n

n

 
    

 
 

To solve, we replace  2 2 2 21 2 3 ... n    with the sum of squares for the first positive n 

integers, where n represents the number of strips we have divided our interval into.  

Now we have 
    3

2

1 2 1 1 (2 1)1

6 6

n n n n n

n n

     
  

   
 

All that remains in order to determine the area is taking the limit as n becomes large positive. 

 
2

1 (2 1) 1
lim

6 3n

n n

n

 
    
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Notation 

Since the area under the graph of a continuous function is a limit and a sum, it is important to 

understand sigma notation.  The area under the continuous function f can be described by

1

lim ( )( )
n

i
n

i

Area f x x




    

Distance 

 To find the distance travelled by an object during a given interval of time, we must know the 

velocity of the object.  If the object has a varying velocity, it can be described with a function. Taking the 

integral of that function, which represents velocity, will give us the distance the object has travelled.  

Polling for sample points more frequently yields higher accuracy. 

1

distance lim ( )( )
n

i
n

i

f t t




   

  5.2 The Definite Integral 

Definition 
1

lim ( ) ( )

bn

i
n

i a

f x x f x dx




   , where 
b a

x
n


  and ix a i x    

The function f being integrated is called the integrand.  The integrand can take on negative 

values; if f has negative area, then the definite integral is the sum of the positive area and 

negative area.  The net area is therefore the area below the x-axis subtracted from the area 

above it on the interval [a,b]. The function must be continuous or suffer only a finite number of 

jump discontinuities in order to be integrable. 

Evaluating Integrals 

Sum of Positive Integers: 
1

( 1)

2

n

i

n n
i




  

  Sum of Positive Integer Squares: 2

1

( 1)(2 1)

6

n

i

n n n
i



 
  

  Sum of Positive Integer Cubes: 

2

3

1

( 1)

2

n

i

n n
i



 
  
 

  
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Sigma Notation rules:  

1

n

i

nc c


       
1 1 1

( )
n n n

i i i i

i i i

a b a b
  

      

 
1 1

n n

i i

i i

c a ca
 

      
1 1 1

( )
n n n

i i i i

i i i

a b a b
  

      

The Midpoint Rule 

When approximating an integral, we use midpoint for sampling to get the most accurate 

estimate. 

1

1

( ) ( ) [ ( ) ... ( )]
nb

i n
a

i

f x dx f x x x f x f x


       

Where
b a

x
n


   and 1 1

1
( ) [ , ]

2
i i i i ix x x x x    midpoint of  

Properties of the Definite Integral 

The definition of the integral was introduced such that a < b. However, the definition is resilient 

even if a > b. If a>b, then 
( )a b

x
n


   instead of

( )b a
n


.    

Intuitively, if a = b, then 0x  , and the area = 0.  ( ) 0
a

a
f x dx   

True for a <b, a = b, and a>b: 

( ),

[ ( ) ( )] ( ) ( )

( ) ( ) ,

4. [ ( ) ( )] ( ) ( )

( ) ( ) ( )

b

a

b b b

a a a

b b

a a

b b b

a a a

c b b

a c a

c dx c b a c

f x g x dx f x dx g x dx

cf x dx c f x dx c

f x g x dx f x dx g x dx

f x dx f x dx f x dx

  

  



  

 



  

 

  

 

1.  where  is any constant

2. 

3.  where  is any constant

 

5.   (adjacent intervals)
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True only for ab: 

( ) 0 , ( ) 0.

( ) ( ) , ( ) ( ) .

( ) , ( ) ( ) ( )

b

a

b b

a a

b

a

f x a x b f x dx

f x g x a x b f x dx g x dx

m f x M a x b m b a f x dx M b a

   

   

       



 



6. If  for  then 

7. If  for  then 

8. If  for  then 

 

5.3 Evaluating Definite Integrals 

Evaluation Theorem  

If f is continuous on the interval [a,b] , then 

'( ) ( ) ( )
b

a
F x dx F b F a  , where F is any antiderivative of f. That is, F’ = f. 

( ) ( )]

b

b

a

a

f x dx F x  

Table of Indefinite Integrals 

 ( ) ( ) ( ) ( )f x g x dx f x dx g x dx        ( ) ( )cf x dx c f x dx   

1

 ( 1)
1

n
n x

x dx C n
n



   
       

1
ln | |dx x C

x
   

x xe dx e C         
ln

x
x a

a dx C
a

   

sin  cosx dx x C        cos  sinx dx x C   

2sec  tanx dx x C       2csc  cotx dx x C    

sec tan  secx x dx x C       csc cot  cscx x dx x C    

1

2

1
tan

1
dx x C

x

 
     1

2

1
sin

1
dx x C

x

 


  
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Applications 

 

 Net Change Theorem 

  The integral of a rate of change is the net change: 

 

'( ) ( ) ( )
b

a
F x dx F b F a   

 

 

5.4 The Fundamental Theorem of Calculus 

The “Area So Far” Function 

If f is continuous on the interval [a,b] , then the function g defined by 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

( ) ( ) 1
0, ( )for 

x h x

a a

x x h x

a x a

x h

x

x h

x

g x h g x f t dt f t dt

f t dt f t dt f t dt

f t dt

g x h g x
h f t dt

h h









   

  



 
  

 

  





 

is an antiderivative of f, that is, g’(x) = f(x) for a<x<b.  

Alternatively, ( ) ( )
x

a

d
f t dt f x

dx
  

Combining the Chain Rule: U subsitution 

4 4

4

1 1 1

4 3

1

sec . sec sec

sec sec sec( )(4 )

x x u

u

d d d
t dt u x t dt t dt

dx dx dx

d du du
t dt u x x

du dx dx

 

   
  

  



 
Find : Let  Then 

 (by the chain rule)
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Differentiation and Integration as Inverse Processes 

[ , ].

1. ( ) ( ) , '( ) ( ).

2. ( ) ( ) ( ),

, ' .

Suppose  is continuous on 

If  then 

 

where is any antiderivative of  that is, 

x

a

b

a

f a b

g x f t dt g x f x

f x dx F b F a

F f F f

 

 






 

Proof of the Fundamental Theorem of Calculus

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

( ) ( ) 1
0, ( )for 

x h x

a a

x x h x

a x a

x h

x

x h

x

g x h g x f t dt f t dt

f t dt f t dt f t dt

f t dt

g x h g x
h f t dt

h h









   

  



 
  

 

  





 

5.5 The Substitution Rule 

Introducing Something Extra 

We change from the variable x to a new variable u. We let u represent a function of x and 

replace dx with du 

 U Subsitution 

22 1Evalulate x x dx  21 ; 2let u x du x dx    

 

2 2

(3/ 2)
(3/ 2) 2

2 1 1 2

2 2
1

3 3

x x dx x x dx u du

u C x C

   

    

  
 

U Substitution related to the Chain Rule 

'( ( )) '( ) ( ( ))F g x g x dx F g x C   because [ ( ( ))] '( ( )) '( )
d

F g x F g x g x
dx

  

( )

,

( ( )) '( ) ( )

If is a differenetiable function whose range is an

 interval  and  is continuous on then

u g x

I f I

f g x g x dx f u du

 

 
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Definite Integrals                
( )

( )

' [ , ]

( ),

( ( )) '( ) ( )

If  is continuous on  and  is 

continuous on the range of  then
b g b

a g a

g a b f

u g x

f g x g x dx f u du



 

 

Symmetry 

0

[ , ].

( ) [ ( ) ( )], ( ) 2 ( ) .

( ) [ ( ) ( )], ( ) 0.

Suppose  is continous on 

 If  is even then 

If  is odd  then 

a a

a

a

a

f a a

a f f x f x f x dx f x dx

b f f x f x f x dx







  

   

 



 

 

 

 

 

5.6 Integration by Parts  

Integration by Parts is the Corresponding Integration to the Product Rule 

Recall that the Product rule of Differentiation gives 

[ ( ) ( )] ( ) '( ) '( ) ( )
d

f x g x f x g x f x g x
dx

 
 

Thus 
[ ( ) '( ) '( ) ( )] ( ) ( )

( ) '( ) ( ) ( ) '( ) ( )

f x g x f x g x dx f x g x

f x g x dx f x g x f x g x dx

 

 



 
 

Formula for Integration by Parts 

( ) ( )

'( ) '( )

Let  and 

The differentials are 

 and

By the Substitution Rule,

u f x v g x

du f x dx dv g x dx

u dv uv v du

 

 

  

 

Sometimes you may need to Integrate by Parts twice! 
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With the Evaluation Theorem 

( ) '( ) ( ) ( )] '( ) ( )
b b

b

a
a a

f x g x dx f x g x f x g x dx    

5.7 Additional Techniques of Integrations 

Trigonometric Integrals 

Evaluate 3cos x . 

 To integrate powers of cosine, we need an extra sin x  factor. 

2 2

3 2 2

sin cos 1,

cos cos (cos ) (1 sin )(cos )

By  we rewrite the integrand x x

x x x x x

 

  
 

Next, substitute sin cos, so u x du xdx  . 

3 2 2

2 31
3

31
3

cos cos (cos ) (1 sin )(cos )

(1 )

sin sin

x dx x x dx x x dx

u du u u C

x x C

  

    

  

  

  

Trigonometric Substitution 

Prove that the area of a circle with radius r is 2r . 

Setting our circle’s center to origin, we have 2 2y r x    

By symmetry, the area in quadrant I is equal to one fourth of the total area of the circle. 

Now we have 2 2 0y r x x r    , thus 2 21
4 0

r

A r x dx  . 
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1

2 2

1
tan

dx x
C

x a a a

  
  

  


2 2 2 2 2

2 2

2 2 2 2

sin . sin

cos 1 sin ,

(1 sin ) cos cos

By the unit circle,  

Again using the helpful identity  we rewrite

x r r x r r

r r r

 

 

  

   

 

  

 

/ 2 / 2
2 2 2 2

0 0 0

2
/ 2 / 2

2 2 21
2 0 0

2
/ 2

1
2 0

( cos ) cos cos

cos (1 cos 2 ), cos (1 cos 2 )
2

sin 2
2

When we substitute a new variable, we must equate the limits of integration

By  we have 

r

r x r r d r d

r
r d d

r

 

 



    

     

 

  

   

  

  

 
2 2

2 2 4

r r  
 

 

                         

The identity 2 2sin cos 1x x  is useful in rewriting the integrand so that we have only sine 

factor and the rest of our terms in cosine (or vice versa).  

 

Partial Fractions 

1. Turn the integrand into a proper fraction 

2. Factor the denominator completely 

3. Set up the partials by writing each factor’s degree in successive powers in separate fractions

1 2 2( 1) ( 1) ( 3)
e.g.

A B Cx D

x x x


 

  
 

4. Multiply the resultant equation by the least common denominator 

5. Create a system of equations by equating the coefficients of like degree terms 

6. Solve for the coefficients 

7. Replace the coefficients in the partial fraction side of the equation and evaluate the integral 

Appendix G: Integration of Rational Functions by Partial Fractions 

Formatting 

For partial fractions to work, the degree of the polynomial in the numerator must be less than 

the degree of the polynomial in the denominator.  If the degree of the polynomial in the 

numerator is greater than the denominator, we must perform long division until we arrive at

( )
( ) , ( ) ( )

( )
 degree of  degree of 

P x
f x P x Q x

Q x
   

Next we simplify the denominator into its distinct linear or quadratic factors.   

 Forms 

For every term in the denominator, we write on the right hand side of an equation 
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2( ) ( )
 or 

i i

A Ax B

ax b ax bx c



  
 

So that we have  

1 2 2

( )

( ) ( ) ( ) ( ) ( )
 +

i i i i

P x A B C Dx E

Q x ax b ax b ax b ax bx c 


  

    
 

Evaluation 

In order to find values for A, B, C, D, and E, we now mutliply both sides of the equation by the 

numerator ( )Q x . Then we form a system of equations by equating the coefficient of like-degree terms. 

Solving for the coeffiecents, we fill the values back into the simplified fractional integral, and evaluate it. 

5.8 Integration Using Tables and Computer Algebra Systems 

Tables of Integrals 

Tables of indefinite integrals list forms of integrals and their evaluations. 

Typically, algebraic manipulation and substitution is used to transform your integral into one of 

the listed integrals. 

  

Computer Algebra Systems 

Mathematica constantly answers in ridiculous forms.  Wolfram alpha does the same. Imperative is the 

ability to spot equivalent forms.  Distribution, forms, and order can all vary, especially when dealing in 

trigonometry. 

Can We Integrate All Continuous Functions? 

No. 

In single variable calculus, we focus on elementary functions:  

Polynomials, rational functions, power functions ( xa ), logarithmic functions, trigonometric and inverse 

trigonometric functions, and functions obtained by addition, subtraction, multiplication, division, and 

composition with another function. 
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xe
dx

x
2sin( )x dx cos( )xe dx 3 1x dx

1

ln
dx

x
sin x

dx
x

If a function f is an elementary function, then 'f  is also an elementary function. 

However, f a continuous elementary does not guarantee ( )f x dx  to be an elementary function. 

Most elementary functions don’t have elementary antiderivatives. Examples 

 

 

 

5.9 Approximate Integration 

Reimann Sums 

1

( ) ( *)

b n

i

ia

f x dx f x x


   

Midpoint Rule 

1

1

( ) ( ) [ ( ) ... ( )]
nb

i n
a

i

f x dx f x x x f x f x


       

Where 
b a

x
n


   and 1 1

1
( ) [ , ]

2
i i i i ix x x x x    midpoint of  

Trapezoidal Rule 

0 1 2 1( ) [ ( ) 4 ( ) 2 ( ) 2 ( ) ( )]
2

( ) /Where  and 

b

n n n
a

i

x
f x dx T f x f x f x f x f x

x b a n x a i x




      

     

  

 

Error Bounds 

Suppose 

3 3

2 2

''( ) .

( ) ( )

12 24

 for Then the errors for Trapezoidal and Midpoint Rules are given by

 and T M

f x K a x b

K b a K b a
E E

n n

  

 
 
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Simpson’s Rule 

We can approximate integration using parabolas to approximate curves.  

0 1 2 3 2 1( ) [ ( ) 4 ( ) 2 ( ) 4 ( ) 2 ( ) 4 ( ) ( )]
3

( ) /Where  and  and  is even.

b

n n n n
a

i

x
f x dx S f x f x f x f x f x f x f x

x b a n x a i x n

 


        

     



5

4

( )

180
S

K b a
E

n


  

 

 

 

 

5.10 Improper Integrals 

An improper integral is defined as a definite integral with an infinity limit or an infinite discontinuity on 
the interval of the definite integral. 

Type 1: Infinite Intervals 

Consider
21

1
dx

x



 . 

 

21
1

2 21 1

1 1 1
( ) 1

( ) 1 0

1
lim ( ) lim 1 1

1 1
lim 1

Notice that  for 

 and 

Thus, 

t
t

t t

t

t

A t dx
x x t

A t t

A t
t

dx dx
x x

 






    



 

 
   

 

 



 
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( ) ( ) 0 .

( ) ( )

( ) ( ) .

Suppose that  and  are continuous functions  for

(a)

(b)

 

 If  is , then is .

 If  is , then  is 

a a

a a

f g f x g x x a

f x dx g x dx

g x dx f x dx

 

 

  

 

 

convergent convergent

divergent divergent

( ) ,

( ) lim ( ) ,

( ) ,

( ) lim ( )

 If  exists for every number  then 

 provided this limit exists as a finite value.

 If  exists for every numbe

(a)

( r  thenb)  

t

a

t

a at

b

t

b b

tt

f x dx t a

f x dx f x dx

f x dx t b

f x dx f x dx





 











 



 ,

( ) ( )

 provided this limit exists as a finite value.

The improper integrals  and  are said to be 

if the corresponding limit exists and if the limit does not exist.

(c)

b

a
f x dx f x dx







  convergent

divergent 

( ) ( )

( ) ( ) ( ) ,

 If both  and   are , then we define

 

a

a

a

a

f x dx f x dx

f x dx f x dx f x dx a





 

 
  

 

  

convergent

 

1

1
1 1. is  if  and  if 

p
dx p p

x



  convergent divergent  

 

Type 2: Discontinuous Integrands 

Type 2 improper integrals deal with discontinuities on the integrated interval, like vertical asymptotes. 

[ , )

( ) lim ( ) ,

, ]

( ) lim

if  is continuous on  and discontinous at , 

then if this limit exists as a finite number.

if  is continuous on (  and discontinou

(a) 

( s at a, 

the

b)

n 

b t

a at b

b

a t

f a b b

f x dx f x dx

f a b

f x dx

 




 

 ( ) ,

( )

if this limit exists as a finite number.

The improper integral  is called if the corresponding limit exists

 and  if the limit does not exist.

b

ta

b

a

f x dx

f x dx

  

 convergent 

divergent

 

A Comparison Test for Improper Integrals 
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Chapter 6  

6.1 More About Areas 

Areas Between Curves 

 
( ) ( )

( ) ( ) [ , ]

 and are continuous functions 

between  and and  for a

Given two cur

ll  on

v  

 

es f x g x

x a x b f x g x x a b  
 

* *

1

lim [ ( )1 ( )]
n

i i
n

i

A f x g x x




  

( ) ( )

, ( ) ( ) [ , ]

[ ( ( )

2

) ]

So the area  of of the region bounded by the curves  and 

and the lines  and  where  and  are continous and  for all  in 
b

a

A y f x y g x

x a x b f g f x g x x a b

A f x g x dx

 

  

 

 

a and b could be where the points intersect or it could be the endpoint limits of integration. 

Some regions are more easily measured by treating x  as a function of y . 

Areas Between Parametric Curves 

For a parametric function defined by the equations 

( ) ( ),

( ) '( )

 and 
b

a

x f t y g t t

A y dx g t f t dt




    

  
 

6.2 Volumes 

Areas Between Curves 

We now consider the volume of solids shapes.  Recall that the volume of a cylinder with a 

circular base of radius r and height h  is 2V Ah r h  . For a solid shape S, we slice the shape 

into slabs and sum the volume of each slab, which is equal to its area multiplied by its height.  
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Definition of Volume

.

,

( ),

Let  be a solid that lies between and 

If the cross-sectional area of  is in the plane  through  and perpendicular to the -axis,

is given by  a continous function, then the volume of 

x

S x a x b

S P x x

A x

 

*

1

lim ( ) ( ) . is 
n b

i
an

i

S V A x x A x dx




   

We can use discs, triangles, rectangles and more to approximate filled volumes. We utilize 

washers to estimate hollow shapes, called solids of revolution. These shapes are made by 

revolving a region about a line. In order to define the area of the washer, we subtract the inner 

area of the smaller concentric cirlce from the outer circle’s total area. The formula we take for 

the area of the slice will depend on the shape of the cross-sectional area.  

 

 

 

6.3 Volumes by Cylindrical Shells  

Some volumes are too difficult to solve with the Washers and Discs. We turn now to the method of 

cylindrical shells. By taking to volume of concentric cylinders and subtracting the inner cylinder volume, 

we arrive at the definition of volume 

 
   

 
 

2 1

2 2

2 1

2 1 2 1

2 1

2 12
2

V V V

r r h

r r r r h

r r
h r r







 

 

  


 

 1
2 1 2 12

2 [ ][ ][ ]

If we let    (The thickness of the shell) and , 

then this formula for the volume of cylindrical shell becomes

 Or circumference height thickness

r r r r r r

V rh r V

    

  
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Now let S be the solid obtained by rotating about the y-axis the region bounded by

( ), , ,and the -axisy f x x a x b x   , where 0b a 

 

We divide the interval [a,b] into n subintervals of equal width and let ix x be the midpoint of the ith 

subinterval. If the rectangle with base 1[ , ] ( ) and height i i ix x f x is rotated about the y-axis, then we 

obtain a cylindrical shell with average radius ix , height ( )if x , and thickness x .  Its volume is 

(2 )[ ( )]i i iV x f x x  ,  

so an approximation of to the volume V of S is given by the sum of the volumes of these shells: 

1

lim 2 ( ) 2 ( )
n b

i i
an

i

x f x x x f x dx 




   . 

We conclude that the volume of a solid obtained by rotating about the y-axis the region under the curve 

( )y f x from to a b , is  

2 ( ) ,where 0
b

a
V x f x dx a b    

6.4 Arc Length  

When we think about the length of a curve, calculus becomes useful in describing lengths of smooth 

curves. With polygons and simple straight lines, we can simply measure the line or use the distance 

formula.  However, for a smooth curve, we’ll need a new approach. We fit n  many line segments of 

equal length to our smooth curve and let n go to infinity. 

 



Skip Lester 
Math 152 

 
Arc Length Formula 

If a smooth curve with parametric equations ( ), ( ),x f t y g t a t b    is traversed exactly once as 

t increases from a to b , then its length is given by

2 2
b

a

dx dy
L dt

dt dt

   
    

   
 . 

Given a function ( ),y f x a x b   , we can regard x  as a parameter. Then the parametric 

equations are , ( ),sox x y f x 

2

1
b

a

dy
L dx

dx

 
   

 
 . 

Given a function ( ), ,x f y a y b   we regard y  as the parameter and the length is 

2

1
b

a

dx
L dx

dy

 
  

 
  

6.5 Average Value of a Function  

When calculating the average value of a changing function f, the integral is again useful. 

For a discrete set of numbers with n  many values in its domain, we sum the values and divide by n: 

1 2 n
average

y y y
y

n

  
  

For the average value of a curve with infinitely many values on its domain [ , ]a b , we divide the interval 

into n many subintervals  of equal length ( ) /  x b a n   .
* *

1( ) ( )nf x f x

n

 
 We can rewrite

( ) /n b a x   , and the average value is given by 
* *

1( ) ( )

( ) /

nf x f x

b a x

 

 
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* *

* * *1
1

1

( ) ( ) 1 1
[ ( ) ( ) ] ( )

( ) /

n
n

n i

i

f x f x
f x x f x x f x x

b a x b a b a 

 
      

   
  

The precision of this measurement increases with n , the number of samples taken. 

We let n approach infinity to write in the form of the definite integral with endpoints a and b. 

*

1

1 1
lim ( ) ( )

n b

i average
an

i

f x x f x dx f
b a b a



  
 
  . 

Mean Value Theorem for Integrals 

If f is continuous on[ , ]a b , then there exists a number c in [ , ]a b such that  

1
( ) ( ) ( )( )

b

average
a

f c f f x dx f c b a
b a

   
   

The Taylor Digression

  

Taylor Polynomials 
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( )

1 2 3

( )

''( ) '''( ) ( )
( ) ( ) '( )( ) ( ) ( ) ... ( )

2! 3! !

!

( )
( ) ( )

!

Where  is the product of the first  positive integers and 0! = 1.

We write this in summation notation as T

n
n

n

k

n

f a f a f a
T x f a f a x a x a x a x a

n

n n

f a
x x a

k

         

 
0

( )

.

( )
( )

!
Taylor polynomial use sequential terms of the form  to approximate the true function, 

where the precision of the approximation increases with , the number of terms.

n
k

k

k
kf a

x a
k

k







 

Taylor’s Inequality 

The difference between the value of the function ( )f x and its Taylor ( )nT x (centered at x a ) is 

called the remainder term. We define it thus: ( ) ( ) ( )n nR x f x T x  . The size of the remainder term 

( )nR x is an indicator of how precise an approximation of ( )f x the Taylor polynomial ( )nT x truly is: The 

smaller ( )nR x , the closer the approximation.  

The upper bounds of this error are given by 
11( )

( 1)!

nn
n

M
R x x a

n

 


, and you choose M. 

Infinite Series 

We begin by considering the humble rational expression 1
3

, 

 whose equivalent decimal representation is the infinitely repeating .3  

 This can be expressed as the sum of fractions 
0 0

, 1. 1,
1

if  If  diverges.k k

k k

a
ar r r ar

r

 

 

  


   

This never-ending addition of fractions is an example of an infinite series.  

An infinite series is any expression of the form 1 2 3a a a   =
1

k

k

a




  

Where 1 2 3, , ,a a a are . 
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Some series may converge upon a finite value. They are called convergent. 
1k

k




  

Others increase or decrease without bound. If a series has no finite sum we say it is divergent. 
1k

k




  

1

1

k k





 is the harmonic series. It has no finite sum. That is, 
1

1

k k





 is divergent. 

 

 

 

 

Partial Sums 

For any series
1

k

k

a




 , we define the partial sums as: 

1 1

2 1 2

3 1 2 3

4 1 2 3

1

4

 

  

    

      

       

So in general the  partial sum is 

 

th

n k

k

s a

s a a

s a a a

s a

n

a a a

s a






 

  

 



 


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Does this series have a sum? 

If the partial sums for a series converge to a finite number, which we will denote by S , we say that the 

series is convergent and write
1

k

k

a S




 . If the partial sums do not converge to any specific number, 

we say that the infinite series is divergent and therefore does not have a sum. Summarizing, 

1

lim ,If  then n k
n

k

s S a S





   

Geometric Series 

A geometric series is an infinite series that has the following special form 

2 3

0

( 0)k

k

ar a ar ar ar a




       

0 0

, 1. 1,
1

if  If  diverges.k k

k k

a
ar r r ar

r

 

 

  


   

Taylor Series 

The limit of Taylor polynomials ( )nT x for a function

( ) 2

0

( ) "( )( )
( ) ( ) '( )( ) ...

! 2!

k
k

k

f a f a x a
x a f a f a x a

k






      , centered at 0a  ,  

As the degree n  goes to infinity.  

( ) 2 ( )

0

( ) "( )( ) ( )
( ) ( ) ( ) '( )( ) ... ( )

! 2! !

k nn
k n

n

k

f a f a x a f a
T x x a f a f a x a x a

k n


          

The Taylors approximate with higher accuracy the function as more terms are added, so taking the limit 

of terms to infinity we get an infinitely accurate approximation: the function itself! 
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Radius of Convergence 

For the Taylor series 
( )

0

( )
( )

!

k
k

k

f a
x a

k





 for a function f(x), centered at x = a, there are only three 

Possibilities: 
(i) The series converges only at x = a. (In this case, we say R = 0.) 

(ii) The series converges absolutely for all x. (In this case, we say R  .) 
(iii) There is a positive number R for which the series converges absolutely whenever 

x a  < R and diverges whenever x a  > R. 

The number R (which may be 0 or infinity) is called the radius of convergence for the Taylor 

Series for ( )f x , centered at x a .                  

Operations with Taylor Series 

We can use simple substitution with Taylor Series. 

Find the Taylor series for
2

1
( )

1 4
f x

x



, find its radius of convergence, 

 Then show that it converges to 
2

1
( )

1 4
f x

x



whenever it converges. 

We know that the Taylor series for 
2 31

( ) 1
1

is g u u u u
u

    


 

And what is ( )f x but the composition
2( ) ( ) 4 and g x h x x  2( ( )) ( 4 )g h x g x   ? Simply 

substitute the composition into the series to obtain the Taylor for ( )f x :

     
2 3

2 2 2 2 2

0 0

1 4 4 4 ( 4 ) ( 4)j j j

j j

x x x x x
 

 

             



Skip Lester 
Math 152 

 

This series is geometric with 21 4 and a r x   , so we find the function is convergent when

2

2

2 2

1 1
( 4 ) 1

1 1 ( 4 )

1 1
4 1

4 2

 if r x
r x

x x x

   
  

     

 

2

2
0

1 1 1
( 4) ( )

1 ( 4 ) 2 2

1
.

2

 for  and diverges for 

We say the radius of convergence is R=

j j

j

x f x x x
x





     
 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Skip Lester 
Math 152 

 

Term by Term Differentiation and Integration 

We can use Taylor series to take derivatives and integrals of otherwise beastly functions. 

Example: Use Taylor series to compute (sin )
d

x
dx

. 

3 5 7 2 4 6

2 4 6

3 5 7
(sin ) ( ...) 1 ...

3! 5! 7! 3! 5! 7!

1
2! 4! 6!

cos

d d x x x x x x
x x

dx dx

x x x

x

         

   



 

Example: find the Taylor Series for ln(1 )x . We know that
1

ln(1 ) , 1
1

x dx x
x

   
 . 

We know the series expansion for 
2 31

1
1

 is simply  u u u
x

   


 

Substituting the series into the integral, we have    

2 31
1 ) 1 1

1
 ( for dx u u u dx x

x
       

   

2 3 4 5
1

1

... ( 1)
2 3 4 5

k
k

k

x x x x x
x C

k






 
         
 

  

If the center value is the same, the following share the same radius of convergence: 

 The Taylor series for a function ( )f x  

 The Taylor series for its derivative '( )f x  

 The Taylor series for its indefinite integral ( )f x dx  

Chapter 7 

7.1 Modeling with Differential Equations  

Models of Population Growth 

We first examine population growth. We let t = time (the independent variable)  

And we let P = the number of people (the dependent variable) 
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.

.

1

 if  is small (Intially, the growth rate is proportional to )

<0 if  (  decreases if it ever exceeds )  

which we can write in one expressions as 

dP
kP P P

dt

dP
P M P M

dt

dP P
kP

dt M





 
  

 

The rate of growth of the population is the derivative
dP

dt
. 

The assumption that population grows at a rate proportional to the size of itself is written as 

dP
kP

dt
 , where k ,the proportionality constant, is held positive.

.

.

1

 if  is small (Intially, the growth rate is proportional to )

<0 if  (  decreases if it ever exceeds )

which we can write in one expressions as 

dP
kP P P

dt

dP
P M P M

dt

dP P
kP

dt M





 
  

 

   

If we rule out negative and zero populations, our population is always increasing. 

And our given derivative can be stated as '( ) ( )
dP

P t kP t
dt

  . 

This states that the derivative of the function is itself multiplied by a constant k . 

We know that *kt ktd
e k e

dt
 . Multiplying the expression by a coefficient C allows the 

expression to represent a number of solutions, called a family of solutions. 

In this case, the value C represents the initial value of the population, (0)P , where the 

exponential function representing it’s growth over time crosses the y-axis.  

We can improve our model by accounting for realistic conditions such as limited resources. We 

can deduce that a population will begin growing exponentially but eventually level off 

approaching its carrying capacity M , decreasing towards M if it ever exceeds M . We now write 

a piecewise model: 

 

 

 

 

 

 



Skip Lester 
Math 152 

 

 A Model for the Motion of a Spring  

Next we examine Hooke’s Law F kx  . Newton’s Second Law tells us F ma and
2

2

d x
a

dt
 . 

So we can write Hooke’s Law as 
2 2

2 2

d x d x kx
m kx

dt dt m

  
    

 
. 

As acceleration is the second derivative of position, this is called a second-order differential 

equation. This equations tells us the second derivative of x is proportional to x but opposite in 

sign. Sine and cosine have this property.  

General Differential Equations 

A differential equation is one which contains an unknown function and one or more of its 

derivatives. The order of differential equations is the order of the highest derivative.  

Consider 'y xy where y is an unknown function of x. A function f is called a solution of a 

differential equation if the equation is satisfied when y = f (x) and its derivatives are substituted 

into the equations. For our example, f is a solution '( ) ( )f x xf x  . 

Often we need to satisfy an additional condition, such as the initial condition.  

Stipulations of the form 0 0( )y t y are called initial-value problems. 

Example 

21
' ( 1) (0) 2.

2
Find a solution of the differential equation  that satisfies the initial condition y y y  

0

1
30

1
3

1
3

1
0 2 ,

1

1 1
2 2 2 1

1 1

1 3

1 3

Substituting the values  and  into the formula  we have 

So we have 

t

t

t t

t t

ce
t y y

ce

ce c
c c

ce c

e e
y

e e


  



 
      

 

 
 

 
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7.2 Direction Fields and Euler's Method 

It is impossible to solve most differential equations exactly, but we can still learn a lot about the solution 

through a graphical approach (direction fields) or a numerical approach (Euler’s method) 

Direction Fields 

Suppose we are asked to sketch the graph of the solution of the initial-value problem 

' (0) 1y x y y    

 

 

 

By sketching short line segments at a number or points with slope ( x y ), we obtain a 

direction fields, which is helpful in interpolating what the solution graph should look like. 

  

 Euler’s Method 

The idea here is to start at the point given by the initial value and proceed along the direction indicated 

by the direction field. After a short distance, look at the slope at the new location, and continue along 

that direction. Each stop is re-evaluation of what the slope should be based on our differential. By 

stopping more frequently (decreasing step size), this method yields successively more precise 

approximations.  

 

   

 

Although we have no equation for the solution, 

we have been given a recipe for the slope at all 

any point  ,x y . In particular, we glean that 

the slope at  0,1 0 1 1 is equal to    

 

Euler’s Method states that approximate values 

for the solution of the initial-value problem

0 0

1

1 1 1

( , ), ( )

( , ) 1, 2,3,

, 

with step size , at , are n n

n n n n

y F x y y x y

h x x h

y y hF x y n



  

 

 

  
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7.3 Separable Equations 

Some differential equations can be solved explicitly. A separable equation is a first order differential 

equation in which the expression for
dy

dx
can be factored as a function of x multiplied by a function of .y  

 ( ) ( )
dy

g x f y
dx

  

 

( ) 1
( ) 0 ( ) .

( ) ( )

( ) ( ) ... ( ) ( )

If , we can write , 

 Now we write it with x one one side and y on the other

so we can integrate both sides! 

Sometime we can even solve for y

dy g x
f y h y

dx h y f y

h y dy g x dx h y dy g x dx

  

  

     ( ) ( ) ( ) ( )

( ) ( )

 in terms of x:

Differentiating implicitly on the left hand side and explicitly on the right,

d d d dy
h y dy g x dx h y dy g x

dx dx dy dx

dy
h y g x

dx

  

 

  

 

Orthogonal Trajectories 

An orthogonal trajectory of a family of curves is a curve that intersects each curve at a right angle. 

Find the orthogonal trajectories of the family of curves 
2x ky where k  is an arbitrary constant. 

The curves 
2x ky form a family of parabolas whose axis of symmetry is the x-axis.  First, we define a 

differential equation that satisfies all members of the family.  

 Differentiating
2x ky , we have

1
1 2

2
 or 

dy dy
ky

dx dx ky
  . 

Next, we must eliminate k so that the equation is valid for all values of k  at once. 

We solve 
2

2

1

2 2
 and write the differential equations as 

x

y

x dy y
k

y dx y x
   . 

Having written it thus, it’s a separable equation, and we can solve it with integration of both sides:
2 2

2 22
2 2

y y
y dy x dx x C x C             
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Mixing Problems 

Mathematical descriptions of mixing situations often lead to first-order separable differential equations. 

A tank contains 20 kg of salt dissolved in 5000 L of water. Brine that contains 0.03 kg of salt per liter of 

water enters the tank at a rate of 25L/min. The solution is kept thoroughly mixed and drains from the 

tank at the same rate. How much salt remains in the tank after half an hour?  

 

 

 

 

Again, we solve by integrating both sides

/ 200 / 200

30/ 200

( ) ( ) 150

ln 150
150 200 200

(0) 20 ln130 ln 150 ln130
200

150 130 130

(30) 150 130 38.1

  is always positive

and , so 

The amount of salt after 30 minutes is 

t t
y t y t

dy dt t
y C

y

t
y C y

y e e

y e

 



  

     


      

  

  

 

kg

 

 

 

 

 

 

 

 

( ) 150 ( )
.75

200 200

kg kg

min min

dy y t y t

dt


   

 0.03 (25 ) 0.75

( ) ( )
25

5000 200

kg kgL
L min minWith rate in = 

kg L kg
And rate out =

L min min

y t y t



  
  

  

( ) ( )rate in rate out
dy

dt
 
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7.4 Exponential Growth and Decay 

Let ( )y t = the quantity y at a time t and  

Let the rate of change of y with respect to t be proportional to its size ( )y t at any time t . 

Law of natural growth: 
dy

ky
dt

 , ( 0)k     Law of natural decay: 
dy

ky
dt

 , ( 0)k   

These equations are separable, so using the tools of 7.3 

(0)

0 0

ln

( 0) (0)

(0) ( )

or 

For the intital-value problem , the solution is 

kt C C kt

kt C k

kt

dy
k dt y kt C y e e e

y

y Ae A e y Ae A

dy
ky y y y t y e

dt

      

     

   

 

 

Population Growth  

1
 or 

dP dP
kP k

dt P dt
   

The quantity 
1 dP

P dt
is called the relative growth rate. Instead of saying “the growth rate is proportional 

to population size” we could say “the relative growth rate is constant.” 

Radioactive Decay  

Radioactive substances decay by spontaneously emitting radiation with relative decay rate
1 dm

m dt
 . 

The rate of decay is expressed in terms of half-life, the time required for half of the given quantity to 

decay. 

0( ) ktdm
km m t m e

dt
   

Newton’s Law of Cooling 

Newton’s Law of Cooling states that the rate of cooling of an object is proportional to the temperature 

difference between the object and its surroundings provided the difference is not too large.  

( )s

dT
k T T

dt
   Change of variable

dy
ky

dt
  
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Continuously Compounded Interest 

If an amount 0A is invested at an interest rate r , then after t years it’s worth 0 (1 )tA r . 

With interest that compound more or less frequently, n times per year, the value is
0 1

nt
r

A
n

 
 

 
. 

For continuously compounding interest,  

/

0 0 0 0

1
( ) lim 1 lim 1 lim 1 ( / )where 

rt rt
nt n r m

rt

n n m

r r
A t A A A m n r A e

n n m  

        
               

           

 

 

7.5 The Logistic Equation 

The Logistic Model  

Building on our model of growth, we now incorporate a carrying capacity M and call it  

the logistic differential equation: 

1
1 1

dP P dP P
k kP

P dt M dt M

   
       

   
 

This behavior implies that P will approach M from above or below when non-zero. 

Direction Fields  

Direction fields like this one demonstrate the idea of carry capacity  
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Euler’s Method  

Example: Use Euler’s method with step sizes 20, 10, 5, 1, and .1 to estimate the population sizes P(40) 

and P(80), where P is the solution of the initial value problem

0.08 1 (0) 100
1000

dP P
P P

dt

 
   

 

 

The Analytic Solution 

The logistic equation is separable and thus explicitly solvable. 

 1
dP P

kP
dt M

 
  

  (1 / )

dP
k dt

P P M
 

   

To evaluate the LHS, we write 

1 1 1

(1 / ) ( ) ( )
 and use partial fractions to get 

M M

P P M P M P P M P P M P
  

   
 

Thus 

1 1
ln ln ln

kt C C kt kt

M P
dP k dt P M P kt C kt C

P M P P

M P M P
e e e Ae

P P

    

 
           

 

 
    

 

 

The solution to the logistic equation is 0

0

( )
1

where 
kt

M PM
P t A

Ae P


 


 

 


