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2.2 Separable Equations

In Section 1.2 and Section 2.1 we used a process of direct integration to solve first
order linear equations of the form

&Y oy

= ay -+ &, (1)

where a and b are constants. We will now show that this process is actually
applicable to a much larger class of equations.

We will use x, rather than t, to denote the independent variable in this section for
two reasons. In the first place, different letters are frequently used for the variables
in a differential equation, and you should not become too accustomed to using a
single pair. In particular, x often occurs as the independent variable. Further, we
want to reserve t for another purpose later in the section.

The general first order equation is
IEr;:,: = f(z.») (z)

Linear equations were considered in the preceding section, but if Eq. (2) is
nonlinear, then there is no universally applicable method for solving the equation.
Here, we consider a subclass of first order equations that can be solved by direct
integration.

To identify this class of equations, we first rewrite Eq. (2) in the form
. dy :
Mix, v) 4 .i'a."l;::__:pr‘.lI:I_I =1 (3}

It is always possible to do this by setting a(x, ») = — (.5 and ¥z, y) = 1, but there
may be other ways as well. If it happens that M is a function of x only and Nis a
function of y only, then Eq. (3) becomes

dy
§ 4 e il 4]
Mixy+ N :I.::l’: 1]

Such an equation is said to be separable, because if it is written in the differential
form

Mix)dx + N(y)dy =0, (5)

then, if you wish, terms involving each variable may be placed on opposite sides of
the equation, The differential form (3) is also more symmetric and tends to
suppress the distinction between independent and dependent variables.

A separable equation can be solved by integrating the functions M and N, We
illustrate the process by an example and then discuss it in general for Eq. (4).

7.3 Separable Equations

Some differential equations can be solved explicitly. A separable equation is a first order differential

d
equation in which the expression fnrd;rcan be factored as a function of x multiplied by a function of y.
¥

dy _
dx—sm fiy)

d
If f{y) = 0, we can write —=- = 82 A
U dx

Now we write it with x ﬁnﬁnne side and y on the other
hiy)dy = g(x)dx..s0 we can integrate both sides! [ h(y)dy = [ g(x)dx

Sometime we can even solve for y in terms of x:
Differentiating implicitly on the left hand side and explicitly on the right,

S 1008) = ([ 0) ([ 1) 2 = g0

dy
Sohy—= =
i{ﬁdx gix)
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Mixing

Al time ¢ = 0 a tank contains CJg Ib of salt dissolved in 100 gal of water; see Figure 2.3.1, Assume that water containing
% Ib of salt/gal is entering the tank at a rate of r gal / mm and that the well-stirred mixture is draining from the tank at

the same rate. Set up the initial value problem that describes this flow process. Find the amount of salt O(¢) in the

tank at any time, and also find the limiting amount £ that IsAFrea'e nt after a very long time. If - = 3and Qg = 201,
find the time 7 after which the salt level is within 2% of Q. Also find the flow rate that is required if the value of T is

not to exceed 43 min. rgavmin,  ioiga dQ
—_— :(f‘u’fe in -(rmwf

r galimin

=, —

FIGURE 2.3.1 The water tank in Example |

We assume that salt is neither created nor destroyed in the tank. Therefore, variations in the amount of salt are due
solely to the flows in and out of the tank. More precisely, the rate of change of salt in the tank. 40 / d¢, is equal to the

rate at which salt is flowing in minus the rate at which it is flowing out. In symbols,

iﬂ,?=riem-:at: out (1)

The rate at which salt enters the tank is the concentration -} Ib / gal times the flow rate » gal / mun, or (r/4) Ib / mun. To

find the rate at which salt leaves the tank, we need to mult H the concentration of salt in the tank by the rate of
outflow, » gal / mm. Since the rates of flow in and out are equal, the volume of water in the tank remains constant at
100 gal, and since the mixture is “well-stirred,” the concentration throughout the tank is the same, namely,

[(z) / 100] Ib / gal. Therefore, the rate at which salt leaves the tank is [#Q(¢) / 100] Ib / mmn. Thus the EllﬁE{EIlliﬂl

equation governing this process |s i U[‘l.' o8
@, 2 Qrc Q=1 e @)
de 4 100 E—ﬂ

The initial condition is
2(0) =0y (3)

Upon thinking about the problem physically, we might anticipate that eventually the mixture originally in the tank
will be essentially replaced by the mixture flowing in, whose concentration is 41 Ib / gal. Consequently, we might

expect that ultimately the amount of salt in the tank would be very close to 25 b. We can also find the limiting amount
@t = 25 by setting d) / dt equal to zero in Eq. (2) and solving the resulting algebraic equation for Q.

To solve the initial value problem (2), (3) analytically, note that Eq. (2) is both linear and separable. Rewr'{,lj;@g it in the
standard form for a linear equation, we have

ot rt
o [%E + Tr-j%ﬂﬂ: 5 &qu,mQ at = _____r:, de

Thus the integrating factor is o™/1® and the general solution is t 0t
—— [
- ~rt/100 100 e
Q(t) = 25 + ce 10, Q = o - A{] (3)
where - is an arbitrary constant. To satisfy the initial condition (3), we must choose ¢ — 25. Therefore, the

solution of the initial value problem (2), (3) is

O(e) = 25+ (Qp— 25)e "1™, : ‘ (6)
or \I\ 0! -7




or

. ~ ._‘.'.r'lrl—-‘-‘ -r-'ILII.'} - Oge v/ 100 e

From Eq. (6) or (7), you can see that O(¢) — 25(Ib) @5 ¢ —+ oo, 50 the limiting value {J; 15 25, confirming our physical
intuition. Further, O(¢) approaches the limit more rapidly as » increases. In interpreting the solution (7), note that the
second term on the right side is the portion of the original salt that remains at time ¢, while the first term gives the

amount of salt in the tank as a « onsequence of the Mow processes Plots of the solution [or » = 2 and for several values
of {g are shown in Figure :

Q1
- | i
! | >
N solutions of the initial value problem (2), (3) 2O 1 dt = (1 4) = 7O/ 100, O(0) = Op ot r = 3 and several values of
FIGURE 2.3.2 i/ di i /10U, 0 :
0
Now suppose that » = 3and Qg = 20 = 50, then Eq. (6) becomes
O(2) =25 + 25¢ 0 03¢ (8]

-

Since 2% of 25 is 0.5, we wish to find the time 7 at which O(;) has the value 25.5. Substituting; = Tand =255 in
Eq. (8) and solving for 7, we obtain

—

F'=(n30)/003= 1304(men) ()

Py

To determine - so that T = 45, return to Eq. (6), set ; = 45, Qg = 50, (1) = 25.5, and solve for r. The result is

r=(100/45)n 50 = 8. 69 gal / man (10)

Since this example is hypothetical, the validity of the model is not in question. If the flow rates are as stated, and if the
concentration of salt in the tank is uniform. then the differential equation (1) is an accurate description of the flow
process. Although this particular example has no special significance, models of this kind are often used in problems
mvolving a pollutant in a lake, or a drug in an organ of the body, for example, rather than a tank of salt water. In such
cases the flow rates may not be easy to determine or may vary with time. Similarly, the concentration may be far
from uniform in some cases. Finally, the rates of inflow and outflow may be different, which means that the variation
of the amount of liquid in the problem must also be taken into account,




&
i
_X
2 *’§+C,j pTE [\IHBYd?’:BM;
7=.t£;,{s ' %‘f-:}é “7*2?’2‘ ? ke
%«,c) 5)’3_;—5: : _%}L-X-}C
G~ |
Eam Jvalv=|- R:d
L(+ T
- 2
LISLl Edu L
(d\-?’/ ) = edta | 9 KQ*X)JFC/
a:v gl g+
& 1 (1= o e
) (ﬁ'S)(i-‘{] b‘fB) + g“‘)’{ \lyt Y -y
(x4 HipE
) ,qj‘_ %U\m Ay+3- 8y
|
o

W 1= Ak
Gaiclion A:Lﬂg: B3 :
L)1



60 - The relative error can also be multiplied by 100% 1o express it as

Terminal velocity true value — appr::xlm.jm:-n
g =

B e e e e e e o ismet (i~ e s~ S i T lrammrviamni i il ke g i

OO
true value

Al4-.1#201.0)]
I[3.+3.3]

1(7.1)
LA

Approximate,
40— mumerical solution

Exact, analytical
solution

v 231+ 1[4 2)+2(231)
3.9+4.63
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e o g 2 .J ¢4 Lhrecthion Frelds and Euler's Method
[ ] i1 / -
It is impossible to solve most differential equations exactly, but we can still learn a lot about the solution

through a graphical approach (direction fields] or a numerical approach (Euler's method)

i Eulﬂr"s mE. cl 75 97 Direction Fields

Suppose we are asked to sketch the graph of the solution of the initial-value problem

; y=x+y pO=1 '
5o al ¢ Slope: al

1 1 ] 3 : Y we Although we have no equation for the solution, | s
FIGURE 1 the slope at (0.1) isequalto 0+ 1=1

we have been given a recipe for the slope at all
A vl biosm ol & P+
By sketching short line segments at a number or points with slope { x + v ), we obtain a
[
RW W Wdirﬂniun fields, which is helpful in interpolating what the solution graph should look like.
| ]
| ; K 1
dy Eﬂ i Canpoblafibl 0 cfoooic L, 1
= i i | 1 3 i ed | ) L = .

—
FIGURE 4 !
\{ I r— ::ff :.Em:llh-hl et e The ssbation curve through o, | |
_F:)
a }f Euler's Method

.U,,""' The idea here is 1o start at the point given by the initial value and proceed along the direction indicated
the direction field. After a short distance, look at the slope at the new location, and continue along

1 cl 'r't“' C' 8&- -\j\lat direction, Each stop is re-evaluation of what the slope should be based on our differential, By
}f 1-

any point( x. ¥). In particular, we glean that

FIGUEE 2

Beginning of ihe solulion curve 1hi

F' siuppmg more frequently (decreasing step size), this method yields successively more precise
Y lnl ( approximations. ,
Y [ Euler's Method states that approximate values
for the solution of the initial-value problem
. — I y= Filx. ¥ vix) = . =
, : with step size b, atx, = x, _, + h,are 4 ‘ : - -
1 L i 2%
! .1'.|.' = .-1'-.“ 1 * 'hF['I1 I'.}.Ill Il = !'E'Eh---flﬁ.uﬂi 14
|GURE 13 Eailer appro immdiacen wellt e siae 1k 235

ke approsimatia with siep sk (3
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